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Abstract—Prognostics technologies determine the health state
of a system and predict its remaining useful life. With this
information, operators are able to make maintenance-related
decisions, thus effectively streamlining operational and mission-
level activities. Experimentation on testbeds representative of
critical systems is very useful for the maturation of prognostics
technology; precise emulation of actual fault conditions on such
a testbed further validates these technologies. In this paper we
present the development of a pneumatic valve testbed, initial
experimental results and progress towards the maturation and
validation of component-level prognostic methods in the context
of cryogenic refueling operations. The pneumatic valve testbed
allows for the injection of time-varying leaks with specified
damage progression profiles in order to emulate common valve
faults. The pneumatic valve testbed also contains a battery used
to power some pneumatic components, enabling the study of the
effects of battery degradation on the operation of the valves.

I. INTRODUCTION

Prognostics technology is centered on the determination of

the health state of a component, subsystem, or system, and

the prediction of critical events, such as the end of life (EOL).

With prognostics, operators can take informed maintenance

decisions to make operational and mission-level activities more

optimal, efficient, and cost-effective. In particular, in cryo-

genic propellant loading operations, launch availability can be

maintained and maintenance cost reduced through the use of

prognostics and other health management technologies [1]. A

cryogenic propellant loading testbed has been developed at

NASA Kennedy Space Center (KSC) that transfers cryogenic

propellant from a storage tank to a vehicle tank through a

network of pipes, pumps, and valves, in order to mature health

management technologies for launch support systems [2], [3].

In propellant loading systems, and many others, pneumatic-

actuated valves play an important role [4], [5]. These valves

are used to control propellant flow, and, therefore, failures may

have a significant impact on launch availability. In this context,

we have developed a pneumatic valve testbed that allows the

controlled injection of faults on a subset of valves used in the

larger testbed at KSC. Such a testbed allows the demonstration

of prognostics for such systems, as well as maturation and

validation of the technology.

In addition to valves, the testbed also includes a set of

batteries used to power some components in the testbed,

allowing the implementation of prognostics for batteries as

well. In many launch support systems, batteries are used as a

backup power supply sources. In these contexts, it is critical

to both monitor battery health and performance and to predict

end of discharge (EOD) and EOL events. The testbed allows

for the implementation of battery prognostics and the study of

the effects of battery degradation on other system components.

In previous work, we described the initial design of the

prognostics testbed [6]. Subsequent to this, construction of the

testbed was completed, with the testbed being used to control

the injection of fault modes on a solenoid valve, a current-

pressure transducer, a pneumatic valve that can be controlled

only to open and closed positions, and a pneumatic valve that

can be controlled to any discreteposition. Additionally, battery

health monitoring and predictive methods were implemented

on the laboratory testbed. The testbed is able to inject four

different leakage faults and one battery fault. This paper

presents the final testbed design, discusses the integration with

prognostics algorithms, and describes detailed experimental

results. We discuss the prognostic results for batteries while

the details of implemented prognostics methodologies for

pneumatic valves in the testbed are discussed in [5], [7].

The structure of the paper is as follows. Section II discusses

the overall design of the prognostics testbed. Section III

describes the faults injected in the system. Section IV briefly

describes the integration with prognostics algorithms. Sec-

tion V discuss the experiments conducted and some illustrative

prognostics results. The paper ends with discussion and con-

clusions in Section VI.

II. PROGNOSTIC TESTBED DESIGN

The testbed as shown in Figure 1 has been designed

and developed to simulate valve faults and demonstrate re-

maining life prediction of valves and batteries in the con-

https://ntrs.nasa.gov/search.jsp?R=20190000911 2020-05-09T13:03:27+00:00Z



y

NI DAQ

Power Supply

DAQ

Control Room

Supply pressure

To Atm

DIO

AIO

Temperature

DV

Supply Current

Supply Current

Supply pressure

CV

LAN

Outlet 

pressure

Battery/Test 
Supply

Test Supply

SV

Electrical Signals

Pneumatic Lines

IPT

Inlet pressure

External Supply

Battery

V4V3

V1

V2

Fig. 1. Schematic for complete Setup

text of cryogenic refueling operations. The solid lines are

the pneumatic pressure lines connecting the control valves,

solenoids, IPT(Current Pressure Transducer), LVDT (linear

variable differential transformer) etc. The dashed lines are

the electrical signals to the IPT and solenoid valve. Pressure

sensors are placed at specific locations to monitor the supply,

signal, control pressures respectively in each of the lines.

Two types of pneumatically-actuated valves are used within

the prognostics testbed. The discrete-controlled valve (DV),

illustrated in Figure 2, is a normally-closed valve with a

linear cylinder actuator. The valve is opened by filling the

chamber and piston assembly above the valve with gas up to

the actuation pressure, and closed by evacuating the chamber

down to atmospheric pressure. When pressure is lost, the valve

will close due to the force exerted by the return spring, hence

it is a normally-closed valve [4].

The continuous-controlled (CV) valve, illustrated in Fig-

ure 3, on the other hand, opens in a continuous manner. Like

the DV valve, the actuator contains a chamber and piston

assembly, however, internally, the actuator contains additional

components in order to modulate the pressure applied to the

piston. The actuator has two pressure ports, one for the supply

pressure, and one for the signal pressure. The signal pressure

Pneumatic Port

Fig. 2. Discrete-controlled valve

is controlled between 3–15 psig in order to move the valve

between fully closed and fully open. The actuator contains

a 3-way, spool type pilot valve. Supply pressure is applied to

one end of the spool while the other end of the spool is vented

to the atmosphere through a diaphragm assembly. When the

valve moves up or down as directed by the imbalance between

the diaphragm and spring forces, the valve spool either vents

the positioner output port to the atmosphere or admits supply
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Fig. 4. Three-way two-position solenoid valve.

pressure to the positioner output port. Depending on the pilot

valve position, the output pressure can vary from zero to full

supply pressure, actuating the valve.

A three-way two-position solenoid valve (SV), illustrated in

Figure 4, is used for controlling the operation of the DV valve.

The cylinder port connects to the valve, the normally closed

(NC) port connects to the supply pressure, and normally open

(NO) port is left unconnected, allowing venting to atmosphere.

When the solenoid is energized, the path from the NC port to

cylinder port is open, allowing gas to pass from the supply

to the valve, thus actuating the valve. When deenergized, the

supply pressure is closed off and the path from the cylinder

port to the NO port is opened, thus venting the DV valve

which closes the valve due to the return spring. The solenoid

is powered by 24 V DC either through the power supply or

the Li-ion batteries for operation.

An IPT converts an analog current signal (4-20 mA) to a

proportional linear pneumatic output (3 to 15 psig) and is

used for controlling the operation of the CV valve. The IPT is

essentially a pressure regulator that is controlled by a current

signal. Supply pressure is connected to the input port, and,

the regulated output pressure will change depending on the

current signal.

Controllable gas leaks are introduced through a set of

proportional valves (V1-V4). These valves combine a solenoid

valve with an electronics package that digitally modulates the

control signal to provide analog proportional control. These

are two-way normally-closed valves and operate on 24 V DC,

powered through the power supply or the batteries.

The data from the different sensors is collected using an 8-

slot NI cDAQ-9188 Gigabit Ethernet chassis which is designed

for remote or distributed sensor and electrical measurements.

In the experimental testbed, for safety requirements, all the

controls and data acquisition activities are done remotely hence

this specific chassis is selected for the testbed. A single NI

CompactDAQ chassis can measure up to 256 channels of

sensor signals, analog I/O, digital I/O, and counter/timers with

an Ethernet interface back to a host machine. All the opera-

tions for the cDAQ-9188 are controlled through a LabVIEW-

designed interface from where the user can have access to all

the input data and output control.

III. SYSTEM FAULTS

As discussed earlier, the main focus of the prognostics

testbed is to emulate valve faults in order to demonstrate

remaining life prediction in the context of cryogenic refueling

operations. The most common type of fault on the propellant

loading testbed is a leak of pneumatic gas. To demonstrate

valve prognostics for leaks, we have emulated faults at selected

locations throughout the pressure distribution system where

leaks are likely to appear. The fault injection is accomplished

by adding a bypass line with a proportional solenoid valve in

the pneumatic lines. The bypass valves are remotely operated

and the position can be specified to control the leakage rate

and support desired damage progression profiles. In addition,

during certain experimental configurations, Li-ion batteries are

used to power the solenoid valve. Faults are incorporated in

the batteries to cause a premature loss of charge. Table I

summarizes the different faults that may appear in the system

and their effect on the components.

A. Solenoid Valve and DV Leak Faults

Figure 5 illustrates the setup for faults that can be injected

in the solenoid valve when energized, to study the degradation

effects on the operation of the DV. As illustrated, the leakage

faults can be injected at the NO and NC seat ports using

the bypass valve V1 which affects the DV operation due to

decreased supply pressure. The leak through V1 emulates a

leak at the cylinder port or, when energized, a leak across the

NO seat (see Table I).

Similarly, Figure 6 illustrates the setup for faults that can be

injected in the solenoid valve when de-energized, to study the

degradation effects on the operation of the DV. A leakage fault

can be injected at the NO and NC seat ports using the bypass

valve V2 which affects the DV operation due to a decreased

supply pressure. In both the injected faults, the amount the

valve will open depends on steady-state pressure and whether

it produces enough force to overcome the valve’s return spring



TABLE I
FAULT INJECTION MATRIX FOR PROGNOSTICS TESTBED

Component Fault Mode Effects Injecting Component

Solenoid Valve Leak across NC seat If SV energized, and DV valve is open, no effect; if DV valve
is closed, no effect. If SV de-energized, and DV valve is closed,
DV valve potentially opens; if DV valve is open, DV closes more
slowly

V2

Leak across NO seat If SV energized, and DV valve is open, loses pressure and DV can
start to close; if DV valve is closed, it will open more slowly. If
SV de-energized, and DV valve is closed, no effect; if DV valve
is open, will close more slowly

V1

Leak at cylinder port Same as leak across NC seat V2

DV Pneumatic gas leak at valve port Same effects as leak at SV cylinder port or leak across NO seat V1

IPT Leak at output port Lowers regulated signal pressure which affects the open time of
the CV

V3

CV Pneumatic gas leak at supply pressure port Lower supply pressure so valve may not open fully, open more
slowly

V4

Pneumatic gas leak at signal pressure port Lowers regulated pressure V3

Li-ion Battery Additional resistance Reduced charge leaves the DV unable to actuate properly R1
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Fig. 5. Solenoid valve leak fault injection when energized on DV valve

force. The steady-state value and how long it takes to get

there depends on the orifice size and leak rate. The amount

the valve will close depends on steady-state pressure and the

return spring force to overcome it.

B. IPT and CV Valve Leak Faults

Figure 7 illustrates the setup for faults that can be injected

through the IPT and bypass valves, to study the degradation

effects on the operation of the CV. As can be seen, a leakage

y
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V1 V2
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Fig. 6. Solenoid valve leak fault injection when de-energized on DV valve

fault can be injected at the supply pressure port through bypass

valve V4. Any changes in the supply pressure will have an

effect on the opening and closing of the CV valve. A leak in

the signal pressure line from the IPT to the CV can also be

injected through V3. Since the IPT modulates the amount of

pressure at its output depending upon the control signal, a leak
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on the signal line will reduce the signal pressure going to the

CV and modify its position.

C. Li-ion Batteries

Li-ion batteries are used as an alternate power source to

operate the solenoid valve. Over the period of operation the

battery charge reduces and the batteries are considered to be

fully discharged once they reach a certain threshold value.

A completely charged battery cell has a maximum potential

voltage of 4.2 V. Six batteries in series are used to operate

the solenoid valve. If the threshold for any of the 6 batteries

falls below 2.6 V, the solenoid valve connection is turned off,

which, in turn, stops operating the DV valve. An resitance

R1 was used in parallel to the SV as a load to discharge the

batteries. The solenoid takes around 40 mA of during each

operation which would take the batteries a very long time to

drain. Hence to accentuate the drain process a 18 ohm resistor

R1 is added in parallel with the solenoid which drains the

battery at a constant load of around 1.4 A to last for 100

cycles of operation of the DV valve.

D. Integration with Prognostics Algorithms

Each of the the faults discussed is exacuted independently

in the system. For both the valves, changes in the opening and

closing times are the parameters that change with leak faults.

Hence, along with the pressure sensors to observe pressure

changes, we use a LVDT sensor that is mounted on the shaft of

each valve. In real systems only LVDT senosr data is availalbe

and no pressure sensors are available. In this work the pressure

sensors were used to observe the pressure changes to study the

effects of faults in the systems. The prognostics algorithms

use only LVDT data for making RUL and EOL predictios.

Changes in the opening and closing times help detect and

isolate faults in the valves. For batteries, voltage, current,

and temperature are the three meausrements that are used to

estimate the state of charge (SOC). Experiments are controlled

through the LABView front-end. Through LABView, sensor

measurements are fed into the prognostics algorithms, imple-

mented in Matlab. The prognostics algorithms compute health

state estimates and life predictions.

IV. PROGNOSTICS APPROACH

In this section we discuss the general prognosis frame-

work used for the valves and batteries, following the gen-

eral estimation-prediction framework of model-based prog-

nostics [9], [10], [11]. Details of the specific algorithms are

described in [5], [7] for the pneumatic valves, [12], [13]

for the IPT, and [14] for the batteries. Here, we summarize

the formulation the prognostics problem, followed by a brief

description of the estimation approach and a description of the

prediction approach.

A. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)),

y(k) = h(k,x(k),θ(k),u(k),n(k)),

where k is the discrete time variable, x(k) ∈ R
nx is the state

vector, θ(k) ∈ R
nθ is the unknown parameter vector, u(k) ∈

R
nu is the input vector, v(k) ∈ R

nv is the process noise

vector, f is the state equation, y(k) ∈ R
ny is the output vector,

n(k) ∈ R
nn is the measurement noise vector, and h is the

output equation.1

In prognostics, we predict the occurrence of an event E that

is defined with respect to the states, parameters, and inputs of

the system. We define the event as the earliest instant that

some event threshold TE : Rnx × R
nθ × R

nu → B, where

B , {0, 1} changes from the value 0 to 1. That is, the time

of the event kE at some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP .

For systems health management, TE is defined via a set

of performance constraints that define what the acceptable

states of the system are, based on x(k), θ(k), and u(k) [11].

For valves, timing requirements are provided that define the

maximum allowable time a valve may take to open or close [4].

For batteries, we are interested in EOD, defined by a voltage

threshold VEOD.

Models of the system components are constructed in this

paradigm that capture both nominal behavior, as well as

faulty behavior and damage progression. Using these models,

observations can be mapped back to the health state of the

system as represented in x and θ. An estimation algorithm,

1Bold typeface denotes vectors, and na denotes the length of a vector a.



Fig. 8. Prognostics architecture.

such as the Kalman filter, unscented Kalman filter, or particle

filter, is used to solve this problem [15]. This state-parameter

estimate, along with a prediction of the future usage of

the component, is used as input to a prediction algorithm

that computes EOL and remaining useful life (RUL) [11],

[16]. In order to account for fault effects propagating across

different components, such as a leak through a solenoid valve

causing changes in pneumatic valve behavior, a system-level

perspective is needed for prognostics [17].

B. Prognostics Architecture

In a model-based prognostics architecture [11], there

are two sequential problems, (i) the estimation problem,

which requires determining a joint state-parameter estimate

p(x(k),θ(k)|y(k0:k)) based on the history of observations

up to time k, y(k0:k), and (ii) the prediction problem, which

determines at kP , using p(x(k),θ(k)|y(k0:k)), a probability

distribution p(kE(kP )|y(k0:kP )). The distribution for ∆kE
can be trivially computed from p(kE(kP )|y(k0:kP )) by sub-

tracting kP .

The prognostics architecture is shown in Fig. 8 [11]. In

discrete time k, the system is provided with inputs uk and

provides measured outputs yk. The estimation module uses

this information, along with the system model, to compute an

estimate p(x(k),θ(k)|y(k0:k)). The prediction module uses

the joint state-parameter distribution and the system model,

along with hypothesized future inputs, to compute the prob-

ability distribution p(kE(kP )|y(k0:kP )) at given prediction

times kP .

C. Estimation

For both the valves and the batteries, we developed a

detailed physics model of component behavior using nominal

data from the testbed which is discussed in [7] and [14]

respectively. For the valves, we then simulate for various

leakage rates, computing the corresponding open and close

times. This information is encoded in a lookup table, so,

given measured open and close times, we can quickly obtain

the corresponding leakage rate. For the batteries, we use an

unscented Kalman filter (UKF) to obtain the state estimate

from the sensor measurements, as described in [14].

D. Prediction

For the valves, from estimation we have estimated leakage

rates under different fault assumptions. We can then project

out the leakage rates to determine the time at which they

reach values corresponding to EOL, assuming a progression

profile. Different faults have different effects on open and

close times, allowing to distinguish which fault is present.

Predictions are made once the measured valve timing exceeds

specified nominal thresholds.

For the batteries, we simulate for various SOC values and

load values the corresponding remaining time until discharge,

and compuate a lookup table. Given the SOC, as computed

by the UKF, and expected future load, we can then quickly

compute the corresponding time of EOD.

V. EXPERIMENTS AND RESULTS

We present here results observed for the fault injection

experiments conducted using the prognostic testbed. In each of

the experiment the fault is injected into one of the components

until the fault progression reaches its maximum extent, i.e., the

component reaches its end of life condition.

A. Leak to Atmosphere : DV Fault

The leak to atmosphere fault is injected by controlling the

position of the leak valve V1. Faults in the valves are injected

by linearly increasing the open percentage of the desired leak

valve in increments of 1%. This emulates a leak across the NO

seat of the solenoid valve, or a leak on the gas line going to

the pneumatic valve. This fault causes a decrease in opening

times and an increase in closing times. Fig. 9 shows the open

times of the valve during the fault progression, and Fig. 10

shows the close times. It is difficult to determine a trend in

the open times, and they do not cross the detection threshold.

The close times are very noisy, and typically cross the closing

time threshold at the 48th cycle. Based on the open and close

times, the fault must be a leak to atmosphere, in agreement

with the model.

B. Leak from Supply: DV Fault

As described in Section II, the leak from supply fault is

injected by controlling the position of the leak valve V2. This

emulates a leak across the NC seat of the solenoid valve. This

fault causes an increase in opening times and a slight decrease

in closing times. Fig. 11 shows the open times of the valve

during the fault progression, and Fig. 12 shows the close times.

The observed trends are in agreement with the model. A fault

is detected at the 43rd cycle based on the opening times.

C. Leak from Signal: CV Fault

The leak from signal fault is injected by controlling the

position of the leak valve V3. This fault emulates a leak a

leak at the output port of the IPT or leak at the input port of
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the CV valve. This fault causes a increase in the opening time

as shown in Fig.13 while the close time does not change. It

is also observed from Fig. 14 that the steady state value of

the CV decreases in this fault. It is difficult to determine a

trend in the close times, and they do not cross the detection

threshold. Since nominal open times are noisy a threshold of

7.6 sec is set with a mean of last 3 values. A threshold of

0.997 for steady state percent values is set to detect a fault in

the operation of the valve.

D. Leak from Supply: CV Fault

The leak from supply fault is injected by controlling the

position of the leak valve V4. This fault emulates a leak in

the supply line or the supply input port of the CV. This fault

causes a increase in the opening time as shown in Fig. 15
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while the close time does not change. It is also observed from

Fig. 16 that the steady state value of the CV decreases in this

fault. It is difficult to determine a trend in the close times, and

they do not cross the detection threshold. Since nominal open

times are noisy a threshold of 7.6 sec is set with a mean of

last 3 values.

E. Battery Degradation Fault

As mentioned earlier in Section II, 6 batteries with a

combined voltage of around 24.5 V are used to power the

solenoid operating the DV. Fig. 17 shows the discharge cycle

for one of the batteries reaching the threshold voltage.

We discuss the prognostics results based on the experiments

conducted using the derived model. We use the architecture

described in [14]. To acheive accurate prognostics results the

developed model should be accurate which in this case is the
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electrochemistry Li-ion battery model [14] along with known

future inputs.

Fig.18 shows the plots for state of charge (SOC) for all the

6 batteries and Fig.19 shows the voltage drop due to load till

one of the batteries reaches the cutoff voltage of 2.6 V. The

experiment was stopped when any one of the batteries reached

a threshold of 2.6 V which avoided the batteries going into

deep discharge.

We plot results in α-λ plots, where α (e.g. 10%) defines an

accuracy cone around the ground truth, and λ is a time point

[18]. As seen from the RUL plot in Fig.20 it is observed that

the prediction during discharge cycle experiment is within the

α-λ cone. This indicates the model is predicting EOL with

high accuracy.

VI. CONCLUSION

In this paper, we presented a prognostics demonstration

testbed for pneumatic valves and batteries in the context of
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cryogenic propellant loading systems. We injected controlled

faults and collected data in the system using the developed

hardware interface. This data was used to develop component

models and to implement prognostic algorithms such that we

are able to make accurate EOL predictions. The testbed helps

in studying relalistic degradation phenomenona and failure

effects in the different components of propellant loading

systems. The study will help us implement the developed

prognostic methodologies in the field and aid operations crew

to make effective maintenance-related decisions.

In the current testbed we able to inject few major faults since

over the period of time through the experiments we have found

that the operational relationship between the injected faults

and the components is very complicated. We are currently

studying more faults that could be injected as well as detected

and isolated using our algorithms. As we better understand

the system and are able to model the system better, we can
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incorporate those faults. The developed testbed was integrated

with the field system to conduct similar experiments, for which

the analysis and results are part of our future work.
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